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Abstract

The problem of computer simulation of the dynamics of elastic tube serpentines with internal flows of
boiling liquids is set-up. The system of partial differential equations is derived which contains discontinuous
coefficients on the right-hand side which depend upon time. The model of motion of clots of the non-
homogeneous boiling liquid is proposed. It is associated with the condition of the fluid mass conservation.
The technique of numerical solution of the constructed equations is elaborated based on the method of the
transfer matrix. The system forced vibrations are traced for their frictionless and dissipative models and
different values of the parameters of the fluid non-homogeneity. It is established that stable and unstable
regimes of the serpentine motion can occur depending on the types of the flow discontinuities and their
velocity.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Tube rods in the shape of screw cylindrical spirals (Fig. 1) interacting with internal movable
(liquid) medium have gained wide application in technology as manifolds of heat exchangers in
nuclear and heat power stations, in hydraulic systems of air- and spacecrafts, in pump units, etc.
The spiral shape of the tubes allows both the enlargement of the heat acceptance surface and the

intensification of the heat acceptance, to compensate to essential temperature deformations of the
structure. Liquid inside a tube, on being heated, begins to boil and transforms into water–vapour
mixture. In response to the interaction between the internal flow of boiling liquid and the
curvilinear tube, complicated static and dynamic effects are generated, which appear under the
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influence of forces acting on the tube from the flow side and which are accompanied by exchange
of the potential and kinetic energies, as well as by static or dynamic loss of stability.
The forces initiating the effects incorporate the tangential forces of viscous friction dependent

on the liquid viscosity and its velocity, as well as the centrifugal inertia forces normal to the rod
axial line. The intensity of the latter is proportional to the moving liquid element mass, square of
its velocity and curvature of the tube segment. Moreover, the Coriolis inertia forces are generated
as a consequence of interaction of rotational and linear motions. On exposure to these forces, the
tube structures begin to be involved into dynamic processes, analogous to the phenomena
proceeding in elongated structures subject to action of moving loads and masses. The peculiarities
of the dynamic behaviour of this type of structure are connected with the effects, which in these
cases the elements of moving masses take part in several types of motion simultaneously and are
exposed to the action of inertia forces which depend upon the element position, and gyroscopic
inertia forces conditioned by interplay of rotation and linear components of motion. As this takes
place, the modes of the elastic system vibrations become more complicated, inasmuch as the
phases of vibrations of its elements diversify, modes of its periodical motions cease to be steady,
the node points begin to move and the vibration mode assumes the shape of a running wave,
following motion of movable masses. Note also that permanent varying of the considered elastic
system mass geometry occurs at the flowing of the boiling fluid inside its channel, which is
accompanied by change of its frequency spectrum. For this reason, in this case two sources of
vibration generation come into being. The first one is connected with parametric generation,
provoked by periodic variation of the system parameters (its mass geometry). The second source
is excitation of purely forced vibrations, induced by action of the inertia forces of movable fluid
masses, which play the role of active forces in this case. By virtue of the fact that, owing to the
absence of the spectrum of natural frequencies, the elastic system loses the modes of natural
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Fig. 1. Design scheme of a tube spiral with moving evaporating clots of liquid.
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vibrations and the possibility to study it by the methods of spectral analysis is excluded. The most
suitable methods for its investigation turn out to be the numerical methods of its immediate
computer simulation.
The questions of analysis of dynamic behaviour of rectilinear tubes with internal continuous

flows were studied in Refs. [1–22]. Influence of elastic foundation on the tube flutter was
investigated in Refs. [23,24]. Dynamic instability of rectilinear tubes with unsteady discontinuous
flows was considered in Ref. [25]. Below the analysis of tube serpentine vibrations excited by non-
stationary discontinuous internal flows, simulating boiling fluid, is performed.

2. Differential equations of the spiral tube motion

To describe the dynamics of the tubular serpentine, it is convenient to use jointly internal and
external geometries, applying the first to individualize the points of the curvilinear tubular rod and
moving liquid clots, and the second to describe its geometry in the deformed state.
The internal geometry of the rod is specified by the co-ordinate, measured as the length of the

axial line from the initial to the current point, and a moving right-handed co-ordinate system
ðu; v;wÞ; the orientation of which at every point of the tube axial line is rigidly connected with the
examined cross-section. The origin of this system lies at the centre of gravity of the cross-section
area, the u- and v-axis is directed along the principal central axes of inertia of the cross-section
area, and the w axis is directed along the tangent to the elastic line. In this case the co-ordinate s is
a concomitant one. The external geometry of the rod determinates the location of each of its
points and the entire elastic line in the fixed inertial co-ordinate system Oxyz:
The Frenet natural trihedron of the elastic line of the rod with unit vectors of the principal

normal n; binormal b and tangent s is introduced.
The equations of bending an elastic tubular rod with distributed forces f and moments m are

written in the form of the system of equilibrium equations [26]

*dF

ds
þ xw � Fþ f ¼ 0;

*dM

ds
þ xw �Mþ s � Fþm ¼ 0 ð1Þ

equations of elasticity

Mu ¼ Aðp � p0Þ; Mv ¼ Bðq � q0Þ; Mw ¼ Cðr � r0Þ;

A ¼ EIu; B ¼ EIv; C ¼ GIw ð2Þ

and equations of kinematics

ds
ds

¼
1

R
n;

dn

ds
¼ �

1

R
s þ

1

T
b;

db

ds
¼ �

1

T
n;

dq
ds

¼ s; ð3Þ

where F; M are the vectors of the internal forces and moments with components Fu; Fv; Fw and
Mu; Mv; Mw; respectively, R is the radius of curvature; T is the torsion radius; q ¼ xiþ yjþ zk is
the radius vector of the points of the axial line; A; B; C are the parameters of the flexural and
torsional stiffnesses; p; q; r are the curvatures and torsion of the axial line in a deformed state; p0;
q0; r0 are the similar values of the undeformed spiral; E is the elasticity module of the rod material;
G is the shear module; Iu; Iv are the inertial moments of the rod cross-section; Iw is the polar
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inertia moment; xw is the Darboux vector which equals

xw ¼
1

R
bþ

1

T
þ

dw
ds

� �
s:

In deduction of Eqs. (1) it is taken into account that they are written out in the ðu; v;wÞ
co-ordinate system, which changes from a point to point, so the total derivatives dF=ds and
dM=ds are calculated through the use of the equalities

dF

ds
¼

*dF

ds
þ xw � F;

dM

ds
¼

*dM

ds
þ xw �M;

which stem from the Euler’s equalities known in classical mechanics. Here d *F=ds and d *M=ds are
the local derivatives. So the vectors F; M; d *F=ds; d *M=ds and xw have the components Fu; Fv; Fw;
Mu; Mv; Mw; dFu=ds; dFv=ds; dFw=ds; dMu=ds; dMv=ds; dMw=ds and p; q; r; correspondingly.
If the axial line of the rod is preset by the equalities

x ¼ xðsÞ; y ¼ yðsÞ; z ¼ zðsÞ: ð4Þ

its geometrical characteristics can be determined via the formulae

1

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx00Þ2 þ ðy00Þ2 þ ðz00Þ2

q
;

1

T
¼ R2

x0 y0 z0

x00 y00 z00

x000 y000 z000

�������

�������
;

p ¼
1

R
sin w; q ¼

1

R
cos w; r ¼

1

T
þ

dw
ds
: ð5Þ

Here w is the angle between the n unit vector and the u-axis, the superindex prime denotes
differentiation with respect to s:
It is also useful to remember, that the equations of kinematics are not independent, inasmuch as

they have six first integrals

jsj ¼ 1; jnj ¼ 1; s 	 n ¼ 0; s � n ¼ b ð6Þ

issuing from the condition of the Frenet basis orthonormality.
It is further assumed that with the selected system parameters, the tubular coil will accomplish

small vibrations that can be described by linear differential equations. These equations can be
relations (1) linearized in the vicinity of an initial undeformed state. One can write them in scalar
form, having eliminated the vector b from them by means of first-integral formulas:

@DFu=@s ¼ FvDr þ DFvr0 � FwDq � DFwq0 � Dfu;

@DFv=@s ¼ �FuDr � DFur0 þ FwDp þ DFwp0 � Dfv;

@DFw=@s ¼ FuDq þ DFuq0 � FvDp � DFvp0 � Dfw;

@Dp=@s ¼ ðDFv � Cq0Dr þ Br0DqÞ=A;

@Dq=@s ¼ ð�DFu � Ar0Dp þ Cp0DrÞ=B;

@Dr=@s ¼ ð�Bp0Dq þ Aq0DpÞ=C;
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@Dtx=@s ¼ Dnx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q20

q
þ nxðp0Dp þ q0DqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ q2

0

q
;

@Dty=@s ¼ Dny

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q20

q
þ nyðp0Dp þ q0DqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q2

0

q
;

@Dtz=@s ¼ Dnz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q20

q
þ nzðp0Dp þ q0DqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q20

q
: ð7Þ

@Dnx=@s ¼ �Dtx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q2

0

q
� txðp0Dp þ q0DqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ q2

0

q
þ ðDr � @Dw=@sÞðtynz � tznyÞ þ ðr0 � @w=@sÞðDtynz þ tyDnz � Dtzny � tzDnyÞ;

@Dny=@s ¼ �Dty

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q20

q
� tyðp0Dp þ q0DqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q2

0

q

þ ðDr � @Dw=@sÞðtznx � txnzÞ þ ðr0 � @w=@sÞðDtznx þ tzDnx � Dtxnz � txDnzÞ;

@Dnz=@s ¼ �Dtz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q20

q
� tzðp0Dp þ q0DqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ q2

0

q
þ ðDr � @Dw=@sÞðtxny � tynxÞ þ ðr0 � @w=@sÞðDtxny þ txDny � Dtynx � tyDnxÞ;

@Dx=@s ¼ Dtx; @Dy=@s ¼ Dty; @Dz=@s ¼ Dtz:

Now on the left-hand sides of these equations, the derivatives with respect to s are partial, since
the terms Dfu; Dfv; Dfw contain derivatives with respect to time t:

3. Simulation of the inertia forces of the boiling liquid

To determine forces generated by a boiling liquid, it is necessary to elaborate a model of
dynamic interaction of the spiral tube and liquid moving inside it. As experimental studies carried
out in connection with analysis of boiling fluid motions in glass tubes heated on the outside testify,
at some thermodynamical states and values of geometrical and mechanical parameters of the
system there appear the cases of the so-called slug flows. They reside in the fact that in the tube
heat-exchanging systems the regimes of fluid boiling are possible, when the generated vapour–
water mixture is not homogeneous but consists of some fluid and vapour segments alternating and
moving at high velocities. As the mixture flows, the process of boiling continues, thus the lengths
of the tube segments filled with a fluid (called fluid clots) are decreasing and the lengths of cavities
filled with a vapour (gas slugs) are increasing. In this case their velocities considerably increase.
The observations made on heated glass spiral tubes show that the lengths of fluid clots change

from approximately 10 internal diameters of the pipe on their formation to a zero on a complete
evaporation, and the volume of a fluid, as it evaporates, increases tenfold. On boiling, the volume
of gas cavities can change from a zero to 50 diameters of the pipe and then, as a result of clot
evaporation, they merge.
In studying the dynamical interaction between an elastic pipe and an inner flow, T.B. Benjamin

[5] showed that viscous friction forces occurring during flow appeared to be relatively small. As
these forces are directed along the axis line of a pipe, they may be neglected in investigation of its
transverse vibration. Thus, the fluid is assumed to be perfect and, while investigating its influence
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on the dynamics of the tube, only its inertial properties will be taken into consideration. In
investigating the problem of vibrations of a pipe with an inner non-homogeneous flow, the motion
of a fluid element along a vibrating and dynamically bending pipe-line will be considered.
Calculation will be made of its acceleration in the direction perpendicular to the pipe axis and
determination of the inertial force acting on the fluid element and transferring to the pipe walls.
In the calculations, the distributed moments of external forces m are ignored. The role of the

vector of external forces in this case is played by the summarized vector f ¼ f i þ ffr of the inertial
forces vector f i and friction forces vector ffr: Since a fluid element accomplishes compound
motion, its absolute acceleration afl is calculated by

afl ¼ ae þ ar þ ac: ð8Þ

Here, ae is the vector of the reference-frame acceleration of the fluid in its movement with the
tube. Therefore,

ae
x ¼ .x; ae

y ¼ .y; ae
z ¼ .z: ð9Þ

The acceleration ar of the fluid element caused by its motion in the curvilinear channel of the
tube is relative. The vector ar lies in a contiguous plane; therefore, it is conveniently represented in
the axes of a moving trihedron:

ar ¼ sdv=dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
v2n: ð10Þ

In the considered case vaconst; but this term is not taken into account, as the inertia force
connected with it is not applied to the tube walls.
The Coriolis acceleration ac is due to interaction of the rotational motion of the tube when it

vibrates and the relative motion of the liquid in it. It is calculated as

ac ¼ 2x � v

The vector x determines the angular velocity of rotation of the trihedron n; b; s in the Oxyz

system. It is expanded in the components of the unit vectors [27]:

on ¼ txdbx=dt þ tydby=dt þ tzdbz=dt;

ob ¼ nxdtx=dt þ nydty=dt þ nzdtz=dt;

ot ¼ bxdnx=dt þ bydny=dt þ bzdnz=dt: ð11Þ

Knowing the total acceleration afl; one finds the inertial force acting on the fluid element:

f ifl ¼ �rflafl: ð12Þ

For a tube element, one has

f it ¼ �rtat ¼ �rtð .xiþ .yjþ .zkÞ: ð13Þ

The sum of f it and f ifl gives the total inertial force acting on a coil element with liquid:

f i ¼ ft þ ffl: ð14Þ
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After corresponding transformations the f i vector projections on the axes of the movable
co-ordinate system Oxyz can be represented as follows:

f i
x ¼ � ðrt þ rflÞ .x � 2rflVfl½’txðb2

x þ n2xÞ þ ’tyðbxby þ nxnyÞ þ ’tzðbxbz þ nxnzÞ�

� rflV
2
fl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
nx;

f i
y ¼ � ðrt þ rflÞ .y � 2rflVfl½’txðbxby þ nxnyÞ þ ’tyðb2y þ n2

yÞ þ ’tzðbybz þ nynzÞ�

� rflV
2
fl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
ny;

f i
z ¼ � ðrt þ rflÞ.z � 2rflVfl½’txðbxbz þ nxnzÞ þ ’tyðbybz þ nynzÞ þ ’tzðb2z þ n2

zÞ�

� rflV
2
fl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
nz: ð15Þ

Note that here rfl denotes the mass of the unit length of the flow. Depending on the type of the
medium fraction, which is located at the considered point of the tube channel, it can be associated
either with the liquid density or with the vapour density.
If the external friction forces ffr are taken into account their components are represented in the

form

f fr
x ¼ �Z ’x; f fr

y ¼ �Z ’y; f fr
z ¼ �Z’z;

where Z is the friction coefficient.
In constitutive equations (7) there are the linearized components Dfu; Dfv; Dfw of the total

external forces. For their construction it is also necessary to linearize fx; fy; fz in the vicinity of the
equilibrium state. Then,

Dfx ¼ � ðrt þ rflÞD .x � 2rflvfl½D’txðb2
x þ n2

xÞ þ D’tyðbxby þ nxnyÞ þ D’tzðbxbz þ nxnzÞ�

� rflv
2
fl½nxðp0Dp þ q0DqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q20

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ q2

0

q
Dnx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q20

q
nx� � ZD ’x;

Dfy ¼ � ðrt þ rflÞD .y � 2rflvfl½D’txðbxby þ nxnyÞ þ D’tyðb2
y þ n2yÞ þ D’tzðbybz þ nynzÞ�

� rflv
2
fl½nyðp0Dp þ q0DqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ q2

0

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ q20

q
Dny þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ q2

0

q
ny� � ZD ’y;

Dfz ¼ � ðrt þ rflÞD.z � 2rflvfl½D’txðbxbz þ nxnzÞ þ D’tyðbybz þ nynzÞ þ D’tzðb2
z þ n2zÞ�

� rflv
2
fl½nzðp0Dp þ q0DqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ q2

0

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ q2

0

q
Dnz þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ q20

q
nz� � ZD’z: ð16Þ

The solutions of equations (7) are expressed in terms of components along the axes u; v; w:
Using expressions (16) and the formulae of transition [2], one can transfer from the components
Dfx; Dfy; Dfz to the projections of the Df vector on the axes u; v;w: To do this an angle w ¼
arctg p=q is introduced between the unit vector n and axis u: After straightforward
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transformations [26] one can write down

Dfu ¼ ðDfxnx þ Dfyny þ DfznzÞ cos wþ ðDfxbx þ Dfyby þ DfzbzÞ sin w;

Dfv ¼ �ðDfxnx þ Dfyny þ DfznzÞ sin wþ ðDfxbx þ Dfyby þ DfzbzÞ cos w;

Dfw ¼ Dfxtx þ Dfyty þ Dfztz: ð17Þ

To calculate the forces Dfu; Dfv; Dfw; one must take into account discontinuities in parameters of
density and inner flow velocities of the liquid–vapour mixture, and assign the law of the fluid clot
flow and the vapour-filled cavities motion in its channel proceeding from the condition of
preserving the overall vapour–water mixture flow mass rate at the inlet and outlet [25]. The model
for changing the flow parameters of motion is formed assuming that the clots of length a0 enter
the channel with a velocity of V0: At the inlet, a gap between two neighbouring clots is equal to
zero. During the motion caused by boiling, the length of a clot varies as a1 ¼ a0e

�kt and decreases
at the rate of ’a ¼ da1=dt ¼ �ka0e

�kt: As a result, the lengths of the spaces (cavities) between clots
increase at the rate of ’b ¼ db1=dt ¼ cka0e

�kt: The volume of vapour in a space is considered to be
c times as much as that of a fluid from which it was formed, therefore the relation rfl ¼ crv is
performed between the densities of the fluid and the vapour.
As the volume of the space of a cavity increases, the velocity Viþ1 of the i þ 1th clot increases

relative to the previous one as Viþ1 ¼ Viðc � 1Þ ’a: The velocity of vapour in the cavity between
clots is assumed to be distributed linearly.
The system of equations (7) and (17), along with the corresponding boundary and initial

conditions, determines the dynamics of a curvilinear tube with internal fluid flow. Underline its
total order with respect to variable s equals 15. But inasmuch as it has three geometric integrals,
only 12 boundary conditions should be formulated at the edges s ¼ 0 and S; as additional three
boundary conditions issue from the first integrals.

4. The technique of solution

With the aim of reducing the system of equations (7), (17) with partial derivatives relative to the
independent variables s; t to the system of ordinary differential equations relative to the variable s;
use an implicit time finite difference scheme (the Houbolt method), according to which the
derivatives relative to time at the tnþ1 time moments are substituted by their four-step finite-
difference analogs [25,26]

’Xðs; tnþ1Þ ¼ ’Xnþ1ðsÞ ¼
1

6Dt
½11Xnþ1ðsÞ � 18XnðsÞ þ 9Xn�1ðsÞ � 2Xn�2ðsÞ�;

.Xðs; tnþ1Þ ¼ .Xnþ1ðsÞ ¼
1

ðDtÞ2
½2Xnþ1ðsÞ � 5XnðsÞ þ 4Xn�1ðsÞ � Xn�2ðsÞ�; ð18Þ

where Dt is the time increment. Its value is predetermined by the condition of the calculation
convergence.
Assume that at the time instants tn�2; tn�1; tn the deformed states of the tube system are known.

Then substituting the derivatives by t in Eqs. (7), (17) by finite differences (18), one gains the
system of ordinary differential equations of the 15th order at the time instant tnþ2: This system is
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rewritten in the general form

dy=dx ¼ AðxÞyþ fðxÞ: ð19Þ

Here y ¼ yðsÞ is the 15-dimensional vector of the unknown functions; x the independent
redenoted variable s changing within the limits of 0pxpS; S the spiral length; AðxÞ the known
discontinuous matrix function of the independent variable x; fðxÞ the preset vector of right
members determined by the known solution functions at previous steps in time.
It should be noted that the deformed state of the tube system at the tn time instant in Eq. (18) is

determined through application of Eq. (19) at t ¼ tn using the deformed states at the previous time
instants tn�3; tn�2; tn�1 and analogously is done for the states at t ¼ tn�1 and t ¼ tn�2 in Eq. (18).
The tube system states at t0 ¼ 0; t1 ¼ Dt and t2 ¼ 2Dt are found via the use of appropriate initial
conditions at t ¼ 0:
The solution to Eq. (19) must be subjected to boundary conditions at the interval bounds,

which are predetermined at the beginning x ¼ 0 and at the end x ¼ S of the integration interval.
They are represented in the general form as

Byð0Þ ¼ 0; DyðLÞ ¼ 0; ð20Þ

where matrices B and D measure ð6� 15Þ:
Note that the number 12 of boundary conditions (20) is not equal to system (19) which is of

order 15. This is associated with the availability of the systems first three integrals which
complement the number of boundary equations making a total of 15.
For constructing the solution yðxÞ; six components yjðxÞ are chosen from the yiðxÞ ði ¼ 1; 15Þ

components, any values yjð0Þ of which do not violate the first equation (20) and the three first
integrals at zero values of the other components. After renumbering the unknown values
yiðxÞ ði ¼ 1; 15Þ in such a way that the index j could take on the values j ¼ 1; 6; the solution to
problem (19), (20) can be given as [26]

yðxÞ ¼ YðxÞCþ y0;

where y0 is the solution to the Cauchy problem for system (19) at zero initial conditions, YðxÞ is a
ð15� 9Þ matrix of particular solutions yij to the homogeneous matrix differential equation

dY=dx ¼ AðxÞY ð21Þ

with initial conditions yijð0Þ ¼ dj
i ði ¼ 1; 15; j ¼ 1; 6Þ for independently modified variables, and

with initial conditions chosen from the first equation of system (20) and three first integrals for the
other variables yijð0Þ ðj ¼ 7; 15Þ: Here dj

i is the Kronecker symbol.
The vector of the constants C ¼ ðC1;C6Þ

T is chosen so that the equality

DYðLÞCþDy0ðLÞ ¼ 0

following from the second conditions of system (20) could be satisfied.
The construction of the matrix function YðxÞ and the vector function y0ðxÞ is made by

integrating equations (19) and (21) by the fourth order Runge-Kutta method. The peculiarity of
using such an approach is that due to the presence of large factors in the coefficients of system (7),
it is rigid and there are rapidly growing functions among its particular solutions. Therefore, in
constructing the matrix of its fundamental solutions, the method of discrete orthogonalization by
Godunov [26] is additionally used which makes it possible to obtain a stable computational
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process by orthogonalizing the vector solutions to the Cauchy problems in the finite number of
argument change interval points. Its essence is in the fact that the integration interval is divided
into sections, and the numerical integration of the initial differential equation is carried out on
each of these sections in the same way as in using the method of transfer matrix. The lengths of the
sections are such that the particular solutions to a homogeneous equation within the limits of one
section could remain linearly independent. When passing from one section to another, the matrix
of the solutions is subject to linear transformation so that the vectors of particular solutions of the
homogeneous and non-homogeneous equations become orthogonal. Thus, it is possible to
preserve the linear independence of the equation solutions in the whole interval of integration. To
avoid excessive increase of the numerical values of the non-homogeneous equation solutions, the
normalization factor is introduced at the section boundaries.

5. The investigation results

The procedure for solution of a system of equations (7), (17) with partial derivatives employs
the Hubolt implicit difference scheme, which is distinguished by enhanced accuracy for its
integration with respect to time [25,26]. It is used to construct a step-by-step process in each step
of which a two-point boundary-value problem is solved for the 15th order equations with
independent variable s that have three first integrals. Since some of the coefficients of this system
have small divisors equal to the squares of the steps of integration with respect to time, this system
is rigid and rapidly increasing functions are among its partial solutions. It is therefore solved by
the joint application of the transfer matrix method, the discrete-orthogonalization method [26,28]
and the Runge-Kutta method.
In the initial undeformed state, the axial line of the tubular coil is determined by the equations

x ¼ R cos
cos a

R
s

� �
; y ¼ R sin

cos a
R

s
� �

; z ¼ s sin a; ð22Þ

where R is the radius of the cylindrical surface of the coil and a is the angle of ascent of the coil.
They are used to calculate the components of the unit vectors of the moving trihedron

nx ¼ �cos
cos a

R
s

� �
; ny ¼ �sin

cos a
R

s
� �

; nz ¼ 0;

tx ¼ �cos a sin
cos a

R
s

� �
; ty ¼ cos a cos

cos a
R

s
� �

; tz ¼ sin a;

bx ¼ tynz � tzny; by ¼ tznx � txnz; bz ¼ txny � tynx ð23Þ

and the parameters of curvature and torsion

p0 ¼ 0; q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx00Þ2 þ ðy00Þ2 þ ðz00Þ2

q
¼

cos2 a
R

;

r0 ¼
1

q2
0

x0 y0 z0

x00 y00 z00

x000 y000 z000

�������

�������
¼

sin a cos a
R

: ð24Þ

Relations (23) and (24) are used to calculate the coefficients of equations (7).

ARTICLE IN PRESS

V.I. Gulyayev, E.Y. Tolbatov / Journal of Sound and Vibration 274 (2004) 233–248242



The above-described procedure was employed to study the vibrations of two types of steel
tubular spirals. The first type tubes have the following characteristics: number of coils N ¼ 5;
R ¼ 0:5 m; a ¼ 0:07214 rad; the curvature and torsion parameters p0 ¼ 0; q0 ¼ 1:99 m�1; r0 ¼
0:14 m�1: For the tube of the second type these parameters comprise: N ¼ 10; R ¼ 0:1 m; p0 ¼ 0;
q0 ¼ 9:95 m�1; r0 ¼ 7:19 m�1: For both tube serpentines, flexural stiffnesses A ¼ B ¼ 1253 N m2;
torsional stiffness C ¼ 955 N m2; outside diameter of circular section of tube d ¼ 0:02 m; wall
thickness of tube h ¼ 0:003 m; mass per unit length of flowing liquid (water) rlq ¼ 1:54�
10�1 kg=m and mass per unit length of tube rt ¼ 1:24 kg=m:
Two cases of the problem were considered. In the first case it was assumed that the external

friction may be neglected and Z ¼ 0: For the second one Z was taken to be 1 Ns=m2:
It is impossible to determine beforehand the period in which the tubular coil will respond to the

inertial forces of the internal flow. The nature of the dynamic response of the coil is established
after analysis of the calculation results.
Eight problems were solved in each case for the selected values of the parameters, which were

different by the lengths a0 of the water clots at entrance and the k parameter, which determined
the rate of the clot evaporating.
The tube dynamics over a time interval equal to 9–10 s; sufficient for establishment of general

regularities of the dynamic process, was studied for each problem at a fixed clot velocity V0: Then,
to find the resonance modes of motion, V0 was changed and the motion modelling was repeated
for the new V0 value. The smallest V0 value at which the vibration amplitude began to increase
without limit was considered to be critical. The step DV0 of V0 variation was DV0 ¼ 1 m=s: In the
vicinity of the critical state, this value was DV0 ¼ 0:1 m=s:
Table 1 corresponds to absence of friction forces ðZ ¼ 0Þ:
It was established in consequence of the result analysis that critical values V0;cr of the velocity of

a water clot entering into the tube could be achieved when the amplitude of the spiral chatter
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Table 1

The values of critical velocities of liquid clots entering into tube spiral and the periods of their forced vibrations at

critical states ðZ ¼ 0Þ

Case a0 k V0;cr First type of the spiral Case V0;cr Second type of the spiral

number ðs�1Þ (m/s) ðR ¼ 0:5 m; N ¼ 5) number (m/s) ðR ¼ 0:1 m; N ¼ 10)

T (s) Tx ðsÞ Ty ðsÞ T (s) Tx ðsÞ Ty ðsÞ

1 S=8 0.5 3.8 0.518 0.284 0.518 5 17.6 0.0447 0.0224 0.046

4.5 0.437 0.219 0.324 33.5 0.0235 0.0276 —

2 S=8 1 2.7 0.729 0.364 0.361 6 16:9;y; 17 0.0466 0.0252 0.0466

4.9 0.402 0.326 0.135 29.7 0.0265 0.018 —

3 S=4 0.5 5:4;y; 7 0.729 0.146 0.212 7 17.7 0.0889 0.0327 0.036

7.2 0.547 0.274 0.616 34 0.0463 0.0339 0.308

4 S=4 1 5:1;y; 5:8 0.772 0.386 0.771 8 16:9;y; 17:1 0.0931 0.031 0.0465

6.3 0.751 0.25 0.824 27.2 0.0579 0.0289 0.115
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Fig. 2. Modes of vibration in time of the serpentine middle cross-section for different values of initial velocities of the

entering fluid.
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began to enlarge indefinitely. In doing so, as the clot motions are not absolutely periodic,
conventional periods T of conventional resonances of the tube vibrations can be established for
every element of the spiral. Usually these values are different for the directions Ox and Oy: In
Table 1 the values Tx and Ty are listed for the middle element ðs ¼ S=2Þ of the tube. It can be seen
from it that there can be several critical values V0;cr or even unstable segments for the velocity V0

and that V0;cr enlarges when a0 diminishes. The critical velocity V0;cr also diminishes with
reduction of k:
The modes of helix motion have high complexity with respect to both the space ðsÞ and time ðtÞ

co-ordinates. Fig. 2 a–h are graphs of the vibrations of the point s ¼ S=2 on the axial line of the
tube along the Ox- and Oy-axis for the precritical (Fig. 2a and b, V0 ¼ 16:8 m=sÞ; critical (Fig. 2c
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Fig. 3. Modes of the serpentine motions for case 8 in Table 1 ðV0 ¼ 27:2 m=sÞ:

Table 2

The values of critical velocities of liquid clots entering into tube spiral and the periods of their forced vibrations at

critical states ðZ ¼ 1 Ns=m2Þ

Case a0 k V0;cr First type of the spiral Case V0;cr Second type of the spiral

number ðs�1Þ (m/s) ðR ¼ 0:5 m; N ¼ 5) number (m/s) ðR ¼ 0:1 m; N ¼ 10)

T (s) Tx ðsÞ Ty ðsÞ T (s) Tx ðsÞ Ty ðsÞ

1 S=8 0.5 3:9;y; 4:2 0.518 0.285 0.519 5 17.9 0.0447 0.023 0.048

4.8 0.437 0.22 0.322 33.9 0.0235 0.0281 —

2 S=8 1 3.0 0.729 0.366 0.360 6 17:1;y; 17:4 0.0466 0.0261 0.047

4.8 0.402 0.327 0.136 31.2 0.0265 0.019 —

3 S=4 0.5 5:7;y; 7:3 0.729 0.147 0.212 7 18;y; 19:1 0.0889 0.033 0.038

7.5 0.547 0.277 0.617 35.7 0.0463 0.034 0.309

4 S=4 1 5:3;y; 5:9 0.772 0.385 0.773 8 17:2;y; 17:4 0.0931 0.033 0.0467

6.7 0.751 0.253 0.826 28.3 0.0579 0.029 0.116
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and d, V0;cr ¼ 16:9 m=sÞ; intercritical (Fig. 2e and f, V0;cr ¼ 17 m=sÞ and second critical (Fig. 2g
and h, V0;cr ¼ 27:1 m=sÞ clot velocities for Case 8 in Table 1. It can be seen that at a low velocity
V0 ¼ 16:8 m=s (Fig. 2a and b), the vibrations are in the form of beats, while in the critical case
V0;cr ¼ 16:9 m=s the amplitude rises, but not linearly, as in the case of ordinary resonance
vibrations (Fig. 2c and d). This type of dynamic stability loss is typical for parametric resonances
of systems whose properties periodically change.
This feature is inherent in the considered system, because its inertia (mass) characteristics

change periodically with the clots movement.
It is also necessary to note that an increase in clot velocity increases not only the frequency of

clot action on the structure but also the intensity of the inertial forces, which is proportional to the
square of the velocity. Unlike in ordinary vibrational systems, therefore, the spiral vibrations can
again be unstable in super-critical states, when V0 is larger than the first critical value V0;cr ¼
16:9 m=s (Fig. 2g and h).
It is not simple to separate a 3-D mode of forced vibrations of the tube as the dynamic processes

are not steady, so the deformed states of its centreline were analyzed for different time instants. In
Fig. 3 the outlines of the spiral states are shown for Case 8 in Table 1. They have different
geometrics and it is rather difficult to distinguish any regularity in the spiral motion.
With the aim of investigating how the external friction influences the stability of the spiral

vibrations, the eight cases considered in Table 1 were recalculated with allowance made for the
friction forces in Eqs. (16) and (17) with the coefficient Z ¼ 1 Ns=m2: The calculation results
(Table 2) testify that the friction forces do not practically influence on the modes and periods of
the system vibrations, but their action brings slight enlargement of the critical values of the flow
velocities and appearance of unstable segment at case 1.

6. Conclusions

The problem of computer simulation of tube spiral vibrations under action of internal flows of
boiling fluid is considered. A mathematic model of dynamics of the elastic serpentine is elaborated
with allowance made for a discontinuous distribution of the parameters of the internal flow
caused by the process of its heating and boiling. The action of inertial forces of positional and
gyroscopical types is taken into account. The analysis of the results obtained for different values
of the parameters of the flow non-homogeneity and velocity makes it possible to make the
following conclusions:

1. The non-homogeneity of the inner fluid flow manifests itself both in the non-homogeneity of
centrifugal inertial forces acting on the pipe in the transverse direction and in the change with
time of the system general mass geometry. In this connection purely dynamical and
parametrical excitations of vibrations take place.

2. The possibility of establishment of stable and unstable regimes of motion is found out, which
depend on the character of non-homogeneity and velocity of the fluid clots and the rate of their
evaporation.

3. The spatial modes of forced vibrations of the tube spiral are constructed. It can be noted that
the centrifugal inertia forces normal to the elastic line of the curvilinear rod and the Coriolis
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inertia forces caused by slewing and rotation of the rod cross-sections lead to expansion and
intricating of the vibration modes. Besides, generation of combined modes including
longitudinal, bending and torsional modes followed by condensation and rarefaction of the
spiral coils as well as by the enlargement and diminution of their diameters is peculiar to the
studied regimes.

4. The influence of external friction forces on the tube forced vibrations is analyzed. It is noted
that these forces lead to displacement of critical values of the fluid velocities and to change of
the vibration amplitudes.
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